wps有类Excel的操作,可以用透视分析功能来制作销售数据分析表。
分析销售数据是一个关键的商业活动。以下是一些分析销售数据的步骤:
1. 收集数据:收集有关产品销售和营收的数据,包括销售额、数量、价格、地区等方面。
2. 分类和筛选数据:将数据按特定分类标准进行分组,并筛选出最重要的数据。例如,可以按照产品类型、订单时间或客户地理位置来分类和筛选数据。
3. 数据可视化:将所选数据以图表的形式呈现出来,这样可以更清楚地观察到趋势、模式和规律。
4. 比较结果:将不同时间段或不同产品的结果进行比较,可以发现一些关键性的趋势或变化。
5. 找到关键因素:通过对比与其他因素的相关性,可以找到对销售业绩产生影响的关键因素,例如产品规格、市场竞争力等。
6. 提出建议:基于上述分析结果提出有针对性的建议和改进措施,帮助企业更好地优化产品和市场策略。
综上所述,在分析销售数据时需要充分利用指标工具和分析技巧,并结合实际情况,制定相应的解决方案来提高企业竞争力和市场份额。
要制作销售数据的环比分析表,可以按照以下步骤进行:
收集数据:收集需要进行环比分析的销售数据,包括月份或季度的销售额、销售量等指标。
确定基准期:选择一个基准期作为比较的起点,通常选择上个月或上一季度作为基准期。
计算增长率:计算每个月或季度的增长率,公式为(当前期数值 - 基准期数值)/ 基准期数值 × 100%。如果结果为正数,则表示增长;如果为负数,则表示下降。
制作表格:使用电子表格软件(如Excel)创建表格,在表格中列出月份或季度、销售额、增长率等相关列。
绘制图表:根据表格中的数据,使用折线图、柱状图等可视化工具,将销售额和增长率以图表形式展示,便于直观地观察变化趋势。
分析与解读:根据表格和图表的数据,分析环比增长率的变化情况,找出增长的原因或下降的原因,并结合其他因素和背景进行综合分析。
添加说明和结论:在环比分析表的底部,添加文字说明和结论,对销售数据的环比变化进行解释和总结。
企业财务分析销售方面的数据一般围绕销售对企业目标利润的影响来进行的,主要将销售量,销售价格,单位产品销售成本与年度计划进行对比分析,计算各因素变化对目标利润的影响,以便巩固已取得的经营成果,找出影响目标利润实现的薄弱环节,采取措施,保证完成和超额完成目标利润。
销售的数据分析可以看波浪线,如果要是一个季度的波浪线比较低,那就说明这个月的销售额度并没有完成。
如果在一段时间内呈上升的趋势,这一段就就说明是盈利阶段,是销售比较提高的阶段
如何分析销售数据?其实,无论是销售团队经理,还是销售业务骨干,到了做销售数据分析、总结和报告时,都懂得用数据以及通过数据得出的核心分析来说话。而相比文字内容,用数据可视化图表来呈现则更直观和有说服力,让领导能一目了然地知道各种销售情况。下面,本回答就分享一个销售数据分析案例,能帮你掌握一些销售数据分析的方法,以及如何快速制作出相应的统计图表。可以直接套用。
本案例中销售数据记录和分析的工具,用的是 SeaTable ,它是一款新型的在线协同表格和信息管理工具,功能比较丰富。其中在数据可视化方面,有基础的统计功能,也有地图、图库、日历、时间线、看板等插件,更有内置 BI 能力的“高级统计”插件,全部免费使用。图表可以导出为图片。本回答就是用“高级统计”来对销售数据进行可视化分析。比较实用。部分效果图如下:
为便于后续演示,我们对数据做了简化和脱敏处理(支持导入导出 Excel 等文件并转换为合适的列类型)。这里简单介绍下两个基本的子表,您可以根据需求自行改动。
在客户信息表中,我们可以记录每个客户的信息,还可以根据销售进展标注状态,以作明显区分且方便后续统计。
在客户信息表中主要有如下列:
此表用于记录销售订单的数据,也是数据分析的主要部分,主要包括如下列:
对于上面的销售数据,我们可以对销售额的构成、变化情况进行分析,也可以对销售的过程进行分析。
我们先对公司的销售额的构成、变化情况来进行分析。
当我们想要查看月度销售额情况时,可以使用柱状图来查看。
比如 2022 年销售额月度汇总,视图选择之前增加的“2022”视图(里面都是 2022 年的销售数据),分组选择对“日期”列按月自动分组,然后选择对“金额”列按总和进行归总,即可直观地展示出 2022 年每月的销售总额。相比在表格中单纯地查看数字,图表则能生动对比。
比如我们想要查看 2022 年季度汇总,可以选择环形图来进行查看,环形图适合这种时间跨度比较大的数据查看。
将分组列选择日期列,归总字段选择金额列,就可以展示出来了。
点击图表时,被点击的部分相关的行记录就会在展开页中显示出来,你可以进一步再点击行,查看单行记录的详情。
当我们想查看 2021/2022 两年的月收入、季度收入对比,了解收入增长情况,那么可以选用时间对比图。
比如先来看月度对比,在图表设置里,选择具体的时间范围后,按月分组,对比数据就可以很清晰地呈现出来了。另外,你还可以开启“显示增幅”选项,黄色曲线就是增幅线,这样一看,两年的月收入对比就更加明显了。
季度收入同样如此,只需要将 X 轴选择按季度分组即可。
当我们想要明确查看各季度的收入情况时,不妨使用数据透视图表,只需要选择日期列和金额列,即可生成一张清晰的收入表。
比如你想要直观地对比 A、B 两种产品在 2021 年、2022 年的每个季度的销售额,根据销售情况,及时调整研发和销售重点,那么就可以用分组柱状图来实现。
从快速生成的图表中可以看到,B 产品从 2021 年第一季度发布后,基本呈快速上涨趋势;在 2022 年,明显保持较稳定的增长趋势,尤其第三季度,突破了历史记录。
A 产品销售额走势与 B 产品基本相同,并且在 2022 年,A 产品的销售第三四季度的销售额极大攀升,非常强劲。
当然,我们还可以用堆叠柱状图来可视化 A、B 产品在各季度的销售额对比。同样可以看到,A 产品的销售额总体上随着季度稳步上升,从 2021 年到 2022 年,逐渐超过了 B 产品,趋于稳定。如下图:
我们可以用条形图来对 2022 年的各销售人员的销售业绩进行对比,进行奖励。
比如我们想要对某个产品,按照付费类型对成交金额进行分析,了解其 2022 年的收入构成,预测 2023 年营收,那么可以制作一个饼图。
在销售成单记录表中,有付费类型一列,那么我们可以新建一个饼图,然后选择该列即可。
可以看到, 2022 年我们的复购比很高,说明客户对我们的产品还是比较满意的,那么我们接下来可以继续提升该产品质量和服务,保证老客户的忠诚度和转介绍,以及新客户的复购率。
以上是对销售额的相关分析,接下来,我们可以对某一产品的销售过程进行分析。
根据客户信息表中的客户状态一列,我们可以制作环形图,分析成单客户在意向客户中的占比,了解成单率。
同前面的金额分析,我们使用饼图,选择客户状态列,即可形成成单率图表。
可以看到,公司的产品成单率还是相当不错的,84.8% 的咨询客户都可以成交。
另外,我们还可以对销售线索和成单数量按月度汇总,制作柱状图,了解销售线索和成单数量的变化情况。
销售线索:横轴选择创建时间,然后按月计数,即可看到每月的销售线索创建数量变化情况。
成单数量:我们可以先新建一个成单数量的视图,设置好过滤器,然后在柱状图中选择此视图即可。
以上,通过一个案例对公司产品的销售数据进行了可视化分析。相比于通过表格去查看数据,通过合适的图表去查看显然更直观,维度也更丰富,让大家能一目了然,也让看似枯燥的数据变得有趣起来。而在数据可视化工具的使用上,SeaTable 不仅能方便地记录各类型信息,而且它的“高级统计”插件相较于那些复杂的数据分析软件,图表类型同样丰富,但操作却更简单易用,对于包括我们这种技术小白在内的人群来说,非常友好。SeaTable 能帮我们轻松实现数据的记录、管理、统计分析、共享等一体化数据管理。
推荐阅读
SeaTable:案例 | 工程项目成本核算管理,用 SeaTable 更简单高效SeaTable:案例 | 用 SeaTable 做装修工程项目管理,更灵活方便SeaTable:数据分析 | 世界森林日,通过统计图表了解世界和中国森林变化趋势SeaTable:数据分析 | 中国教育总体发展情况和水平如何?这些统计图表告诉你销售数据分析可以采取多种思路进行,包括:
首先对于全部销售数据进行宏观分析,从中发现趋势、模式、突变点等;
第二步,对产品细分价格进行研究,分析不同价格的销量变化;
第三步,可以利用多变量分析等方法,分析不同市场的销售情况,发现市场机会;
第四步,分析销售人员的工作能力,找出有效的激励机制;
最后,通过数据分析,判断用户的忠诚度,为客户提供更具有竞争力的服务。
以电商零售企业为例。主流的销售额、订单量、完成率、增长率、重点商品的销售占比、各平台销售占比。更多的也可以跟踪利润、成交率(转化率)、人均产出等。
基本业绩分析:
建设销售分析体系,以渠道组织、商品体系实时监控、统计销售业绩。
指标追踪:
根据数据间逻辑,从汇总数据的异常,从时间、品牌系列、地区纬度进行钻取识别问题。
商品价值分析:
根据商品的销量、利润等指标分析商品价值
价格带分析:
分析价格带利润、价格带销量。
产品销售动态的数据分析,和常规的不同在于有动态二字。动态就是要关注到周的变化或者是日的变化,可以从几个维度去分析。
1、产品分类的销售情况。比如化妆品的销售,分为膏霜类、洗涤类、彩妆类、面膜类等,看产品的销售额占比情况。
2、产品价格区间销售分析。比如将产品划分为100以下,100-200,200-500,500以上四个区间,看下销售额的构成,是哪个区间的卖的更好些,原因是什么。
3、从产品的动销比来分析。有的产品虽然卖的金额不少,但是相比采购量来看,还是不理想,也就是动销比偏小,那就说明这个产品还是需要加大销量的。
4、从销售的策略或活动来分析。比如销售策略是多卖A产品,但是实际却是B产品卖的多,说明偏离了公司的策略,也是有问题的。
5、产品畅销和滞销排行。公司最畅销的产品是什么,TOP10,最滞销的产品是什么,TOP10.
6、公司的产品线规划分析。比如年龄覆盖是否全部覆盖到了,产品线1适合老年,产品线2适合小孩,产品线3适合青年,但是没有适合中壮年的。这个是从宏观上分析产品线有无遗漏。
7、新品的销售情况分析。新推出的产品,有没有收到预期的效果,产品的市场渗透率或占有率多高,产品的客户满意度怎样,都可以分析。
8、竞争对手的产品策略和销售情况分析。
销售数据分析主要是看销售是否健康?是否可持续?客户开发是否符合公司的战略,举例说明:一个小公司需要在三年内上市,那么销售数据的分析就应该按照上市公司的数据分析的逻辑来做,反正一个公司不想上市,就看老板需要啥?
是扩大销售额还是提高净利润?
这两个方向会导致销售数据完全不一样!
上一篇:三十九度烧要打119吗?
下一篇:浙商的过人之处?